pyalcs Documentation
Release 1.4

Norbert Kozlowski

Dec 16, 2019

Contents:

1 Anticipatory Learning Classifier Systems (ALCS) 1
2 Guide 3
2.1 Installation e e e 3
22 ACS2 .« 4
23 TACS 5
24 Jupyternotebooks e 6

CHAPTER 1

Anticipatory Learning Classifier Systems (ALCS)

ALCS are is an extension to basic LCS compromising the notation of anticipations. Doing that the systems predomi-
nantly are able to anticipate perceptual consequences of actions independent of a reinforcement predictions.

ALCS are able to form complete anticipatory representation (build environment model) which allows faster and intel-
ligent adaptation of behaviour or problem classification.

pyalcs Documentation, Release 1.4

2 Chapter 1. Anticipatory Learning Classifier Systems (ALCS)

CHAPTER 2

Guide

2.1 Installation

Use a Python 3.7 environment for development.

2.1.1 Creating environment with Conda (example)

Having a Conda distribution (i.e. Anacoda, Minicoda etc) create environment like:

conda create —--name pyalcs python=3.7 ‘

Then activate it with:

source activate pyalcs ‘

2.1.2 Dependencies

You should be fine with:

pip install -r requirements.txt
pip install -r requirements-integrations.txt —--upgrade

In case of troubles see Dockerfile and .travis.yml how the project is built from scratch.

2.1.3 Launching example integrations

I assuming you are inside the virtual environment created before. In order to run the integrations from the console you
need to specify Python PATH to use the currently checked-out version of pyalcs library:

pyalcs Documentation, Release 1.4

PYTHONPATH=<PATH_TO_MODULE> python examples/acs2/maze/acs2_in_maze.py

2.1.4 Interactive notebooks

Start the Jupyter notebook locally with:

make notebook

Open the browser at localhost : 8888 and examine files inside notebooks/ directory.

You might also want to install some extensions:

jupyter labextension install @jupyter-widgets/jupyterlab-manager
jupyter contrib nbextension install

2.2 ACS2

ACS?2 is derived from the original ACS framework. The most important change is that it embodies genetic generaliza-
tion mechanism. Implementation is based on “An Algorithmic Description of ACS2” by Martin V. Butz and Wolfgang
Stolzmann.

2.2.1 Original code

The original author’s code is located in assets/original directory.

However it was written in 2001 when C++ was quite different than now. For that reason a slightly changed version
(syntax) working on nowadays compilers can be found in assets/ACS2.

To compile the sources type (inside assets/ACS2):

’make

And to run it:

’./acs2++.out <environment>

For example:

’./acsz++.out Envs/Mazed.txt

2.2.2 Maze statistics

After running an example integration, say acs2_1in_maze . py, here’s what the output tells you:

Agent stats

See 1cs.agents.acs2.ACS2
* population: number of classifiers in the population

* numerosity: sum of numerosities of all classifiers in the population

4 Chapter 2. Guide

pyalcs Documentation, Release 1.4

e reliable: number of reliable classifiers in the population
e fitness: average classifier fitness in the population

* trial: trial number

* steps: number of steps in this trial

* total_steps: number of steps in all trials so far

Environment stats

There are currently no environment statistics for maze environment.

Performance stats

* knowledge: As defined in examples.acs2.maze.utils.calculate_performance (): If any of
the reliable classifiers successfully predicts a transition, we say that the transition is anticipated correctly. This
is a percentage of correctly anticipated transitions among all possible transitions.

2.3 rACS

rACS (“Real-valued anticipatory classifier system”) is an extension to ACS2 handling real-value input.

2.3.1 Real-value representation

Real values from range x € [0, 1] are encoded with predefined resolution using the following class

UBR

2.3.2 Changes

The following is and in-progress list of all modifications made to the ACS2:

Representation

* Don't care and pass-through symbols (in ACS2 ' #°) are represented as fully ranged UBR.

e complement_marks () works if there is no previous value in the set

Classifier

e specialize () creates a fixed, narrow UBR like UBR (4, 4). Later on during another processes it can be
generalized more.

* is_more_general looks at average cover_ratio

2.3. rACS 5

pyalcs Documentation, Release 1.4

Condition

e cover_ratio function,

* does_match_condition - analyzes incorporation (when doing subsumption)
Mark

* Mark holds a set of encoded perception values that holds bad states for classifier

Effect

* is_specializable looks inside range.

Components

e ALP implemented

¢ Custom mutation in GA (condition and effect)

Thoughts

* Maybe effect could return just encoded value, instead of UBR...

* Specificity/generality should measure how wide is the UBR

* Maybe u_max should hold information how specific condition should be (not just wildcards but spread)
¢ In the end of ALP phase we should perform something like classifier merge

* There is still very aggressive*‘generalize‘‘ function in Condition part.

* favour most general condition and least general effect

* majority voting for best action

» mutation should not check for lower/upper bounds. Let it be random (alleles might swap)

* covering should add some random noise

e mutation can shrink/broad both condition / effect

2.4 Jupyter notebooks

2.4.1 Description of ACS2

History

ACS (1997)

First ALCS (ACS) was developed by Stolzman in 1997 (with puts an additional anticipatory part in each classifier).
It is a new kind of classifier system that learn by using the cognitive mechanism of anticipatory behavioral control
(introduced in cognitive psychology by Hoffman).

6 Chapter 2. Guide

http://www.psychologie.uni-wuerzburg.de/stolzmann/gp-98.ps.gz

pyalcs Documentation, Release 1.4

Anticipatory Behavioral Control

In 1992 Hoffman formulated a learning mechanism with basic assumption that a decisive factor for pur-
posive behavior is the anticipation of the behavior consequences. Behavior consequences usually depend
on the situation in which the behavior is executed. So it is necessary to learn in which situation S which
behavior R (reaction) leads to which effects E.

CXCS (2000)

Tomlison and Bull (2000) published a cooperate learning classifier system (CXCS) in which cooperations between
rules allow anticipatory proceses.

YACS (2001)

Another ALCS with an explicit anticipatory part YACS, has been published in Gerard and Siguad (2001).

ACS2

ACS2 (derived from ACS) is intendet to create a solution that is complete, accurate and maximally general. Major
differences between ACS and ACS2: - ACS2 evolves explicit rules for situation-action tuples in which no changes
occurs (a pass-through-symbol in E part requires a change in value), - ACS2’s ALP (specialization pressure) and GA
(generalization pressure) processes are improved, - starts with initially empty population of classifiers, - modifications
are made on the whole action set (not just on the executed classifier),

Knowledge representation

Knowledge in an ACS2 is represented by a population of classifiers. Each classifier represents a condition-action-effect
that anticipates the model state resulting from the execution of the action given the specified conditions.

A classifier in ACS2 always specifes a complete resulting state.

It consists of the following main components: - condition part (C) - specifies the set of situations in which a classifier
is applicable, - action part (A) - proposes an available action, - effect part (E) - anticipates the effects of the proposed
action in the specific conditions, - guality (g) - measures the accuracy of the anticipated results, ¢ € [0, 1], - reward
prediction (r) - estimates the reward encountered after the execution of action A in condition C, » € R - immediate
reward prediction (ir) - estimates the direct reinforcement encountered after execution of action A in condition C,
ireR

Classifier fitness score is calculated using quality and reward - fitness(cl) = cl.q - cl.r

The condition and effect part consist of the values perceived from the environment and # symbols (i.e. C,E €
{l17 127 ey lm7 #}L

A #-symbol in the: - condition part is called “don’t care” and denotes that the classifier matches any
value in this attribute, - effect part is called “pass-through” specifies that the classifier anticipates that the
value of this attribute will not change after the execution of the specified action

Non pass-through symbols in E anticipate the change of the particular attribute to the specified
value (in contrast to ACS in which a non pass-through symbol did not require a change in value).

Additionally each classifier compromises: - Mark (M) - records the values of each attribute of all situations in which
the classifer did not anticipate correctly sometimes, - GA timestamp (:math:‘t_{ga}‘) - timestamp when GA was last
applied, - ALP timestamp (:math:‘t_{alp}‘) - timestamp when ALP was last applied, - application average (aav) -
estimates the frequency a classifier is updated (i.e. part of an action set), - experience counter (exp) - counts the

2.4. Jupyter notebooks 7

http://dl.acm.org/citation.cfm?id=689033
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.1149

pyalcs Documentation, Release 1.4

number of applications, - numerosity (num) - denotes the number of micro-classifers this macroclassifier represents
(one classifier may represent many identical micro-classifier)

Agent interaction

ACS2 interacts autonomously with an environment.
In a behavioral act at a certain time ¢, the agent perceives a situation o (t) = {l1, 1o, ..., lm}L, where:
* m denotes the number of possible values of each environmental attribute (or feature),
e l1,lo,...,1, denote the different possible values for each attribute,
* [denotes the string length.
Note that each attribute can only take discrete values.
The system can act upon the environment with an action a(t) = {@1, @, ..., ay,}, where:
* n specifies the number of different possible actions in in the environment,
* ai,qo,...,q, denote the different possible actions

After the execution of an action, the environment provides a scalar reinforcement value p(t) € R

Environmental Model

By interacting with the environemnt the ACS2 learns about it’s structure. Usually the agent starts without any prior
knowledge. Initially new classifiers are mainly generated by a covering mechanizm in ALP. Later the ALP generates
specialized clasifiers while the GG tries to introduce some genetic generalization.

Figure below presents the interaction with greater details. 1. After the perception of the current situation o (t),
ACS?2 forms a match set [M] comprising all classifiers in the population [P] whose conditions are satisfied in o' (),
2. ACS2 chooses an action «(t) according to some strategy (see below), 3. With respect to the chosen action, an
action set [A] is generated that consist of all classifiers in [M] that specify the chosen action «(t), 4. After the
execution of a(t) classifier parameters are updated by ALP and RL. New classifiers might be added or deleted due
to the ALP and GG (see below).

Action selection plays an important role in building the environmental model. Aproaches for dealing with explo-
ration/explotation trade-off can be used. It’s worth mentioning that different approach should be taken for either
stationary and non-stationary environments.

Literature: - “The exploration-exploitation dilemma for adaptive agents”
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.5740&rep=repl &type=pdf>‘_ ~ Rejeb (explo-
ration/exploitation dillema in XCS) - “Biasing Exploration in an Anticipatory Classifier System” ~ Butz (action
delay bias, knowledge array bias) - “Action-Planning in Anticipatory Classifier Systems” ~ Butz, Stolzmann (action
planning) - “‘Should I stay or should I go? How the human brain manages the trade-off between exploitation
and exploration <http://rstb.royalsocietypublishing.org/content/362/1481/933.short>‘__" (discussing the aspect
of making decisons what examined in depth, gittins index, soft-max) - “ACS2 Model Exploitation” ~ Butz (all
techniques above)

Fact: Humans show a greater tendency to explore when there is more time left in a task

Aim is to explore unknown regions in a more directed way. In each time step the exploration can be executed with €
probability:

* random (default), > randomly select an action (might be the best or totally bad one),

* action delay bias, > the execution of actions which have been executed quite long ago (according to t,;,) in a
given situation promises the detection of new situation-action-effect relations.

8 Chapter 2. Guide

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

pyalcs Documentation, Release 1.4

» knowledge array bias > calculates the averaged quality for each action from the match-set and selectes the worst
one.

* action delay & knowledge array bias > action is chosen randomly using two approaches

* gittins index (NYI) > measure the reward that can be obtained taking into consideration the terminating condition
(used in bandit problems). Restricted only to stationary problems. More info here

¢ soft-max (NYI) > the drawback of random action selection is that it chooses equally amongs all possible actions.
Soft-max enables the possibility to vary action probabilities as a graded function of estimated value. More
information about this probabilistic approach here

* expected and unexpected uncertanity (NYI) > biological approach by analysing ACh levels and NE signals
* best (default). > selects a classifier with highest fitness value - ¢ - r from the match set [M])

* action planning > Knows where the goal is and tries to find the shortes paths with known classifiers. It’s also a
good idea to explore unknown paths (not only this to goal).

* other techniques might use ir value (currently not used)

Anticipatory Learning Process (ALP)

The ALP was originally derived from the cognitive theory of anticipatory behavioral control (Hoffman, 1993).
It compares the anticipation of each classifier in an action set with the real next situation o (¢t + 1).
The process results in the evaluation and specialization of the anticipatory model in ACS2.

ALP first update classifier parameters. Next an offspring is generated and inaccuate classifiers are re-
moved.

The quality g of a generated classifier is set to the parent’s value but never lower than 0.5 since the new
classifier is supposedly better than the parental classifier. The reward prediction r inherits the value of its
parent.

The execution of an action is accompanied by the formation of the action set, which represents the anticipations of
the real next situation. Thus, ACS?2 satisfies the first point of Hoffmann’s theory of anticipatory behavioral control
which states that any behavioral act or response (R) is accompanied with an anticipation of its effects. Moreover, the
comparison of the anticipation of each classifier in [A] can be compared to a continuous comparison of anticipations
with real next situations as stated in Hoffmann’s second point. The third and fourth point address the consequences of
the comparison and are realized in the distinction of an unexpected case and an expected case.

Parameter updates

The following parameters are updated in the following order - quality (q), mark (M), application average (aav), ALP
timestamp (%,;,,) and the experience counter (exp).

Quality

The quality ¢ is updated according to the classifiers anticipation. If the classifier predicted correctly, the quality is
increased using the following (Widrow-Hoff delta rule) formula:

g+ q+p(1—9q)

Otherwise it is decreased:

Intheequation,: math : ‘B € [0, 1)‘denotesthe x xlearningrate x xof AC'S2.Thesmallerthelearningrate, themorepassive AC'S

2.4. Jupyter notebooks 9

https://www.wikiwand.com/en/Gittins_index
https://books.google.pl/books?id=CAFR6IBF4xYC&pg=PA30&lpg=PA30&dq=softmax+action+selection&source=bl&ots=eaWSRVaaVC&sig=Ufhmh8Ws6oJ7_Wf5e3mr53cf_18&hl=pl&sa=X&sqi=2&ved=0ahUKEwjv9JPz-fjSAhXLFSwKHZ0cDvcQ6AEIXzAI#v=onepage&q=softmax%20action%20selection&f=false

pyalcs Documentation, Release 1.4

Mark

Situation o (t) = (o1,...,0y) is added to the mark M = (my, ..., my) if the classifier did not anticipate correctly.
In this case $:nbsphinx-math:forall_i m_i = m_i U‘: nbsphinax — math : sigma‘_i}$.

Application average

Parameter is updated using the “moyenne adaptive modifiee” technique as introduced in Venturini (1994).

Thetechniqueassuresthe fastadaptationof : math : ‘aav‘oncetheclassi fierisintroducedandlaterassuresacontinuesupdateac

ALP timestamp

The ALP time stamp is set to the current time t recording the last parameter update in the ALP.

clitgp —t

Experience

Increment experience by 1

cl.exp + cl.exp + 1

Classifier generation and deletion

The ALP generates specialized offspring and/or deletes inaccurate classifiers.

Inaccurate classifiers are classifiers whose quality is lower than the inaccuracy threshold 6;. When the
quality of a classifiers falls below 6; after an update, it is deleted.

More specialized classifiers are generated in two ways.

1. An expected case, in which a classifier anticipated the correct outcome, a classifier might be generated if the
mark M differs from the situation o (t) in some attributes, i.e. 3; ;{; € m;Al; # o;. Since the mark specifies the
characteristics of situations in which a classifier did not work correctly, a difference indicates that the specific
position might be important to distinguish the correct and wrong outcome case. Thus, the ALP generates
an offspring whose conditions are further specialized. If there are unique differences in the mark compared to
the current situation, i.e. 3,0; ¢ m;, then one of the unique difference is specialized in the offspring. However,
if there are only positions that differ but o; is always part of m;, i.e. V;0, € m;, then all differing positions
are specialized. > The number of specialized positions in the conditions that are not specialized in the effects is
limited to U,,qq-

In other words: - the strength of the classifier is increased, - if there is a mark, then a new classifier is formed that is
more specific in the C and E parts, trying to exclude the possibility to be chosen in the state(s) described by mark

2. In an unexpected case, a classifier did not anticipate the correct outcome (one or more predicted changes are
incorrect or when one or more components change that were predicted to stay the same).

10 Chapter 2. Guide

pyalcs Documentation, Release 1.4

In this case a classifier: - is marked by the situation o (¢), - has decreased quality: cl.q « cl.q — 8 - cl.q
In difference with the ACS all classifiers from the action set will become marked in this case.

Also, an offspring classifier may be generated, if the effect part of the old classifier can be further specialized (by
changing pass-through symbols to specific values) to specify the perceived outcome correctly. All positions in condi-
tion and effect part are specialized that change from o (¢) to o(t + 1).

Therefore attributes whose value changed in the environment but are anticipated to stay the same are specified in
condition and effect part of the offspring.

In other words: - the classifier gets a mark, - the strength of the classifier is decreased, - if possible, a new classifier is
generated that is more specific than the old one and that anticipates the environment correctly.

A classifier is also generated if there was no other classifier in the actual action set [A] that anticipated the effect
correctly. In this case, a covering classifier is generated that is specialized in all attributes in condition and effect part
that changed from o () to o(t 4 1). > The covering method was not applied in ACS since in ACS a completely general
classifiers was always present for each action.

The attributes of the Mark M of the covering classifier are initially empty. Quality ¢ is set to 0.5 as well as the reward
prediction r, while the immediate reward prediction ¢r as well as the application average avv are set to 0. The time
stamps are set to the current time ¢.

.M+ 0
cl.q+ 0.5
clr <+ 0.5
clir <0
cl.aav < 0
clitgp 1t
clitge <1

Itisimportanttomentionthatbothaddingandremovingclassi fiers x xdoesnotin fluencetheongoing AL Papplication * *.

Genetic Generalization (GG)

While the ALP specializes classifiers in a quite competent way, over-specializations can occur sometimes as studied
in (Butz, 2001). Since the over-specialization cases can be caused by various circumstances, a genetic generalization
(GG) mechanism was applied that, interacting with the ALP, results in the evolution of a complete, accurate, and
maximally general model.

The mechanism starts after applying ALP module, and looks as follow:
1. Determine if GG should be applied. GG is applied if the average time since last GG application in the current
action set [A] is larger than the threshold 0.

2 cie(a) Cl-tgacl.num

2 ctea) cl-num

t— > 0ga

2. If the mechanism is applied update the application time for all classifiers V jcajcl-tyq < 1,

3. Select two classifiers using “roulette-wheel selection”, with respect to their qualities q.

2.4. Jupyter notebooks 11

pyalcs Documentation, Release 1.4

4. Reproduce two classifiers, by removing marks and halving the qualities.

cli.M <+ 0
Clg.M «— 0
cly.q
2
cla.q
2

cly.q +

cly.q +—

5. Mutate classifiers, by applying a “generalizing mutation”. >Generalizing mutation is only mutating specified
attributes in the condition part C back to don’t care # symbols. A specialized attribute is generalized with a
probability .. Moreover, conditions of the offspring are crossed applying two-point crossover with a probability
of x. In the case of a crossover application, quality, reward prediction, and immediate reward prediction are
averaged over the offspring.

6. Insert new offspring classifiers into [P] and [A] > If a generated offspring already exists in the population, the
offspring classifier is discarded and if the existing classifier is not marked its numerosity is increased by one.

.M~

cl.num < cl.num + 1

The GG mechanism also applies a deletion procedure inside the action set. If an action set [A] exceeds the action
set size threshold 6, excess classifiers are deleted in [A]. The procedure applies a modified “tournament selection”
process in which the classifier with the significant lowest quality, or the classifier with the highest specificity is deleted.
Thus, deletion causes the extinction of low-quality as well as over-specialized classifiers.

Aproximatelly a third of the action set size takes part in the tournament.

Reinforcement Learning (RL)

RL approach in ACS2 adapts the Q-learning (Watkins, 1989; Watkins & Dayan, 1992) idea (away from the traditional
bucket brigade algorithm).

An environmental model needs to be specific enough to represent a proper behavioral policy (rewards) in the model.
If this is not the case, “model aliasing” might take place.

In “model aliasing” a model is completely accurate in terms of anticipations but over-general with respect
to reinforcement.

In order to learn an optimal behavioral policy in ACS2, parameters r and r are continuously updated after executing

an action and obtaining next environmental perception and reward - p(t).

r« 1+ B(pt) + (cl.g-clor) =)

5y max

cle[M](t+1)Acl. E£A{#}E
ir < ir + B(p(t) —ir)

As before 8 € [0, 1] denotes the “learning rate” biasing the parameters more or less towards recently encountered

reward. v € [0, 1) denotes the “discount factor”.

The values of r and ¢r consequently specify an average of the resulting reward after the execution of
action A over all possible situations of the environment in which the classifier is applicable.

Other aspects

12 Chapter 2. Guide

pyalcs Documentation, Release 1.4

Subsumption

If an offspring classifier was generated (regardless if by ALP or GG), the set is searched for a subsuming
classifier.

The offspring is subsumed if a classifier: - has more general condition part, - has identical effect part, -
is reliable (its quality is higher than the threshold 6,.), - is not marked, - is experienced (its experience
counter exp is higher than the threshold 0.,,,).

If there are more than one possible subsumer, the syntactically maximally general subsumer is chosen. In
the case of a draw, the subsumer is chosen at random from the maximally general ones. If a subsumer
was found, the offspring is discarded and either quality or numerosity is increased dependent on if the
offspring was generated by ALP or GG, respectively.

Interaction of ALP and GG.

Several distinct studies in various environments revealed that the interaction of ALP and GG is able to
evolve a complete, accurate, and maximally general model in various environments in a competent way
(see e.g. Butz, Goldberg, and Stolzmann, 2000, Butz, 2001). The basic idea behind the interacting
model learning processes is that the specialization process extracts as much information as possible from
the encountered environment continuously specializing over-general classifiers. The GG mechanism,
on the other hand, randomly generalizes exploiting the power of a genetic algorithm where no more
additional information is available from the environment. The ALP ensures diversity and prevents the
loss of information of a particular niche in the environment. Only GG generates identical classifiers and
causes convergence in the population.

Sources

» “Anticipatory Classifier Systems” - Wolfgang Stolzmann

* “Biasing Exploration in an Anticipatory Learning Classifier System” - Martin V. Butz

Other resources

* ACS-tutorial (presentation)

2.4.2 ACS2 in Maze

This notebook presents how to integrate ACS2 algorithm with maze environment (using OpenAl Gym interface).

Begin with attaching required dependencies. Because most of the work is by now done locally no PIP modules are
used (just pure OS paths)

General
from __ future_ import unicode_literals

$matplotlib inline

import numpy as np

import pandas as pd

import matplotlib

import matplotlib.pyplot as plt

(continues on next page)

2.4. Jupyter notebooks 13

http://www.psychologie.uni-wuerzburg.de/stolzmann/ACS-tutorial/ACS-tutorial.pdf

pyalcs Documentation, Release 1.4

(continued from previous page)

To avoid Type3 fonts in generated pdf file

matplotlib.rcParams|['pdf.fonttype'] = 42
matplotlib.rcParams|['ps.fonttype'] = 42
Logger

import logging
logging.basicConfig(level=1logging.WARN)

ALCS + Custom environments
import sys, os
sys.path.append (os.path.abspath('../"))

Enable automatic module reload

$load_ext autoreload
%$autoreload 2

Load PyALCS module
from lcs.agents.acs2 import ACS2, Configuration, ClassifiersList

Load environments

import gym
import gym_maze

Environment - Maze

We are going to look at provided mazes. Their names starts with “Maze...” or “Woods. ..” so see what is possible to
load:

Custom function for obtaining available environments

filter _envs = lambda env: env.id.startswith("Maze") or env.id.startswith ("Woods")
all_envs = [env for env in gym.envs.registry.all()]
maze_envs = [env for env in all_envs 1f filter_envs (env)]

for env in maze_envs:
print ("Maze ID: [{}], non-deterministic: [{}], trials: [{}]".format (
env.id, env.nondeterministic, env.trials))

Maze ID: [MazeF1l-v0], non-deterministic: [False], trials: [100]
Maze ID: [MazeF2-v0], non-deterministic: [False], trials: [100]
Maze ID: [MazeF3-v0], non-deterministic: [False], trials: [100]
Maze ID: [MazeF4-v0], non-deterministic: [True], trials: [100]
Maze ID: [Maze4-v0], non-deterministic: [False], trials: [100]
Maze ID: [Maze5-v0], non-deterministic: [False], trials: [100]
Maze ID: [Maze6-v0], non-deterministic: [True], trials: [100]
Maze ID: [Woodsl-v0], non-deterministic: [False], trials: [100]
Maze ID: [Woodsl4-v0], non-deterministic: [False], trials: [100]

Let’s see how it looks in action. First we are going to initialize new environment using gym.make () instruction from
OpenAl Gym.

#MAZE = "Woodsl4-vO"
MAZE = "Maze5-vO0O"

Initialize environment
(continues on next page)

14 Chapter 2. Guide

pyalcs Documentation, Release 1.4

(continued from previous page)

maze = gym.make (MAZE)

Reset it, by putting an agent into random position
situation = maze.reset ()

Render the state in ASCII
maze.render ()

The reset () function puts an agent into random position (on path inside maze) returning current perception.

The perception consists of 8 values representing N, NE, E, SE, S, SW, W, NW directions. It outputs O for
the path, 1 for the wall and 9 for the reward.

Show current agents perception
situation

We can interact with the environment by performing actions.
Agent can perform 8 actions - moving into different directions.

To do so use step (action) function. It will return couple interesting information: - new state perception, - reward
for executing move (ie. finding the reward) - is the trial finish, - debug data

]: ACTION = 0 # Move N

Execute action
state, reward, done, _ = maze.step (ACTION)

Show new state
print (f"New state: {state}, reward: {reward}, is done: {done}")

Render the env one more time after executing step
maze.render ()

New state: ('1', 'O', 'O', '1', '1', '1', '0', '0'"), reward: 0, is done: False

2.4. Jupyter notebooks 15

[6]:

[7]:

pyalcs Documentation, Release 1.4

Agent - ACS2

First provide a helper method for calculating obtained knowledge

def _maze_knowledge (population, environment) -> float:
transitions = environment.env.get_all possible_transitions ()

Take into consideration only reliable classifiers
reliable_classifiers = [c for c in population if c.is_reliable()]

Count how many transitions are anticipated correctly
nr_correct = 0

For all possible destinations from each path cell
for start, action, end in transitions:

pO0 = environment.env.maze.perception (*start)
pl

environment.env.maze.perception (xend)

if any([True for cl in reliable_classifiers
if cl.predicts_successfully(p0, action, pl)]):
nr_correct += 1

return nr_correct / len(transitions) * 100.0

from lcs.metrics import population_metrics

def _maze_metrics (pop, env):
metrics = {
'knowledge': _maze_knowledge (pop, env)

Add basic population metrics
metrics.update (population_metrics (pop, env))

return metrics

Exploration phase

CLASSIFIER_LENGTH=8
NUMBER_OF_POSSIBLE_ACTIONS=8

Define agent's default configuration

cfg = Configuration(
classifier_length=CLASSIFIER_LENGTH,
number_of_possible_actions=NUMBER_OF_POSSIBLE_ACTIONS,
metrics_trial_frequency=1,
user_metrics_collector_fcn= maze_metrics)

Define agent
agent = ACS2(cfqg)

$stime
population, metrics = agent.explore (maze, 100)

16 Chapter 2. Guide

pyalcs Documentation, Release 1.4

CPU times:
Wall time:

user 5.19 s,
5.22 s

sys:

11.7 ms,

total:

.2 s

We can take a sneak peek into a created list of classifiers. Let’s have a look at top 10:

: population.sort (key=lambda cl:

for cl in population[:10]:

—cl.fitness)

print ("{!r} \tqg: {:.2f} \tr: {:.2f} \tir: {:.2f}".format(cl, cl.q, cl.r, cl.ir))
O####010 O 1####101 (empty) g: 0.963 r: 884.0 ir: 884.0 f:
—~851.7 exp: 41 tga: 645 talp: 2817 tav: 46.2 num: 1 g: 0.96 r: 884.
02 ir: 884.02
9#1##010 O 1####101 (empty) g: 0.921 r: 809.5 ir: 806.3 f:
—745.3 exp: 31 tga: 1682 talp: 2817 tav: 35.7 num: 1 q: .92 r:,,
—809.54 ir: 806.29
FH#O0L#4## 2 ##110### (empty) g: 0.875 r: 762.2 ir: 762.2 f:
—~666.8 exp: 27 tga: 590 talp: 2875 tav: 79.1 num: 1 g: 0.87 762.
17 ir: 762.17
011###01 0 9#####10 (empty) gq: 0.989 r: 563.2 ir: 0.0 f:
—557.2 exp: 40 tga: 951 talp: 2817 tav: 43.4 num: 1 g: 0.99 r: 563
—17 ir: 0.00
01##04#01 O 9#####10 (empty) g: 0.976 r: 563.2 ir: 0.0 f:,
—549.5 exp: 41 tga: 949 talp: 2817 tav: 42.7 num: 1 g: 0.98 r: 563
—17 ir: 0.00
01110001 O 9#####10 (empty) g: 0.972 r: 563.0 ir: 0.0 f:
—547.1 exp: 41 tga: 949 talp: 2817 tav: 41.3 num: 1 g: 0.97 r:
—-563.01 ir: 0.00
O#14##001 0 9#####10 (empty) q: 0.953 r: 553.8 ir: 0.0 f:,,
—527.6 exp: 32 tga: 1769 talp: 2817 tav: 32.5 num: 1 g: 0.95 r: 553
—76 ir: 0.00
1000#101 1 9111#010 (empty) g: 0.942 r: 347.8 ir: 0.0 f:
—327.6 exp: 14 tga: 644 talp: 2795 tav: 1.46e+02 num: 1 g: 0.94 .
—r: 347.78 ir: 0.00
1#0110## 2 ##90# 144 (empty) q: 0.958 r: 290.4 ir: 0.0 f:,
—278.1 exp: 22 tga: 1168 talp: 2874 tav: 76.9 num: 1 g: 0.96 r: 290
39 ir: 0.00
11011001 2 ##90#1+## (empty) q: 0.846 r: 290.3 dir: 0.0 f:,
—245.7 exp: 22 tga: 1168 talp: 2874 tav: 77.0 num: 1 g: 0.85 r:,
—290.33 ir: 0.00
Exploitation

Now we can either reuse our previous agent or initialize it one more time passing the initial population of classifiers
as apriori knowledge.

Reinitialize agent using defined configuration and population

agent = ACS2(cfg, population)

$%time

population, metrics = agent.exploit (maze, 1)

CPU times: user 33.3 ms, sys: 16 ps, total: 33.4 ms
Wall time: 33.4 ms

2.4. Jupyter notebooks 17

[13]:
[13]:

[14]:

[15]:

pyalcs Documentation, Release 1.4

metrics[-1]

{'trial': O,
'steps_in_trial': 2,
'reward': 1000,
'knowledge': 24.65753424657534,
'population': 419,
'numerosity': 419,
'reliable': 78}

Experiments

def parse_metrics_to_df (explore_metrics, exploit_metrics):

def extract_details (row) :

row['trial'] = row['trial']
row['steps'] = row['steps_in_trial']
row ['numerosity'] = row['numerosity']
row['reliable'] = row['reliable']
row['knowledge'] = row['knowledge']

return row

Load both metrics into data frame
explore_df = pd.DataFrame (explore_metrics)
exploit_df = pd.DataFrame (exploit_metrics)

Mark them with specific phase
explore_df['phase'] = 'explore'
exploit_df['phase'] = 'exploit'

Extract details
explore_df = explore_df.apply(extract_details, axis=1)
exploit_df = exploit_df.apply (extract_details, axis=1)

Adjuts exploit trial counter
exploit_df['trial'] = exploit_df.apply(lambda r: r['trial']+len (explore_df)

r o

—axis=1)

Concatenate both dataframes
df = pd.concat ([explore_df, exploit_df])
df.set_index('trial', inplace=True)

return df

For various mazes visualize - classifiers / reliable classifiers for steps - optimal policy - steps (exploration | exploitation)
- knowledge - parameters setting

def find _best_classifier (population, situation, cfg):

match_set = population.form_match_set (situation)
anticipated_change_cls = [cl for cl in match_set if cl.does_anticipate_change ()]

if (len(anticipated_change_cls) > 0):
return max (anticipated_change_cls, key=lambda cl: cl.fitness)

return None

def build_fitness_matrix(env, population, cfg):

(continues on next page)

18

Chapter 2. Guide

pyalcs Documentation, Release 1.4

original = env.env.maze.matrix
fitness = original.copy ()

Think about more 'functional' way of doing this
for index, x in np.ndenumerate (original) :
Path - best classfier fitness
if == 0:
perception = env.env.maze.perception(index[1l], index[0])

(continued from previous page)

best_cl = find_best_classifier (population, perception, cfqg)
if best_cl:

fitness[index] = best_cl.fitness
else:

fitness[index] = -1

Wall - fitness = 0
if x == 1:
fitness[index] = 0

Reward - inf fitness
if x == 9:
fitness[index] = fitness.max () + 500

return fitness

def build_action_matrix(env, population, cfg):
ACTION_LOOKUP = {
@ w'%, 13 w’%, 23 w'=?, 3z w’Y,
4: u'l', 5: u'', 6: u'«<"', 7: u'"'

original = env.env.maze.matrix
action = original.copy () .astype (str)

Think about more 'functional' way of doing this
for index, x in np.ndenumerate (original) :
Path - best classfier fitness
if == 0:
perception = env.env.maze.perception(index[1l], index[0])

best_cl = find_best_classifier (population, perception, cfqg)

if best_cl:
action[index]

ACTION_LOOKUP [best_cl.action]
else:
action[index]

Il
[N}

Wall - fitness = 0
if x == 1:
action[index] = '"\#'

Reward - inf fitness
if x == 9:

action[index] = 'R'

return action

2.4. Jupyter notebooks

19

[16]:

[18]:

pyalcs Documentation, Release 1.4

Plotting functions and settings

Plot constants
TITLE_TEXT_SIZE=24
AXIS_TEXT SIZE=18
LEGEND_TEXT_SIZE=16

def plot_policy(env, agent, cfg, ax=None):
if ax is None:
ax = plt.gcal()

ax.set_aspect ("equal")

Handy variables

maze_countours = maze.env.maze.matrix
max_xX = env.env.maze.max_X
max_y = env.env.maze.max_y

fitness_matrix = build_fitness_matrix(env, agent.population, cfg)
action_matrix = build_action_matrix(env, agent.population, cfqg)

Render maze as image
plt.imshow (fitness_matrix, interpolation='nearest', cmap='Reds',
extent=[0, max_x, max_y, 0])

Add labels to each cell
for (y,x), val in np.ndenumerate (action_matrix) :
plt.text (x+0.4, y+0.5, "${}$".format (val))

ax.set_title("Policy", fontsize=TITLE_TEXT_SIZE)
ax.set_xlabel ('x', fontsize=AXIS_TEXT_SIZE)
ax.set_ylabel ('y', fontsize=AXIS_TEXT_SIZE)

ax.set_x1im(0, max_x)
ax.set_ylim(max_y, 0)

ax.set_xticks (range (0, max_x))
ax.set_yticks (range (0, max_y))

ax.grid(True)

def plot_knowledge (df, ax=None) :
if ax is None:
ax = plt.gcal()

explore_df = df.query("phase == 'explore'")
exploit_df = df.query("phase == 'exploit'")

explore_df['knowledge'].plot (ax=ax, c='blue')
exploit_df['knowledge'].plot (ax=ax, c='red')
ax.axvline (x=len (explore_df), c='black', linestyle='dashed')

ax.set_title

("Achieved knowledge", fontsize=TITLE_TEXT_SIZE)
ax.set_xlabel
1
[

"Trial", fontsize=AXIS_TEXT_SIZE)
"Knowledge [%]", fontsize=AXIS_TEXT_SIZE)

(
ax.set_ylabel (
0, 1057)

ax.set_ylim(

20

aspect="auto',

Chapter 2. Guide

pyalcs Documentation, Release 1.4

[19]: def plot_steps (df, ax=None):
if ax is None:
ax = plt.gcal()

explore_df = df.query("phase == 'explore'")
exploit_df = df.query("phase == 'exploit'")

explore_df['steps'].plot (ax=ax, c='blue', linewidth=.5)
exploit_df['steps'].plot (ax=ax, c='red', linewidth=0.5)
ax.axvline (x=len (explore_df), c='black', linestyle='dashed')

ax.set_title("Steps", fontsize=TITLE_TEXT_SIZE)
ax.set_xlabel ("Trial", fontsize=AXIS_TEXT_ SIZE)
ax.set_ylabel ("Steps", fontsize=AXIS_TEXT_SIZE)

[20]: def plot_classifiers(df, ax=None) :
if ax is None:
ax = plt.gcal)

explore_df = df.query("phase == 'explore'")
exploit_df = df.query("phase == 'exploit'")
df ["numerosity'].plot (ax=ax, c='blue')

df['reliable'].plot (ax=ax, c='red')
ax.axvline (x=len (explore_df), c='black', linestyle='dashed')
ax.set_title("Classifiers", fontsize=TITLE_TEXT_SIZE)
ax.set_xlabel ("Trial", fontsize=AXIS_TEXT_SIZE)

ax.set_ylabel ("Classifiers", fontsize=AXIS_TEXT_SIZE)
ax.legend (fontsize=LEGEND_TEXT_SIZE)

[21]: def plot_performance (agent, maze, metrics_df, cfg, env_name):
plt.figure (figsize=(13, 10), dpi=100)
plt.suptitle (f'ACS2 Performance in {env_name} environment', fontsize=32)

axl = plt.subplot (221)
plot_policy (maze, agent, cfg, axl)

ax2 = plt.subplot (222)
plot_knowledge (metrics_df, ax2)

ax3 = plt.subplot (223)
plot_classifiers(metrics_df, ax3)

ax4 = plt.subplot (224)
plot_steps (metrics_df, ax4)

plt.subplots_adjust (top=0.86, wspace=0.3, hspace=0.3)

Maze5

[22]: %%time

define environment

(continues on next page)

2.4. Jupyter notebooks 21

pyalcs Documentation, Release 1.4

(continued from previous page)

maze5 = gym.make ('Maze5-v0"')

explore
agent_maze5 = ACS2 (cfqg)
population_maze5_explore, metrics_maze5_explore = agent_maze5.explore (maze5, 3000)

exploit
agent_maze5 = ACS2 (cfg, population_mazeb5_explore)
_, metrics_maze5_exploit = agent_maze5.exploit (mazeb5, 400)

CPU times: user 7min 2s, sys: 876 ms, total: 7min 3s
Wall time: 7min 4s

: mazeb_metrics_df = parse_metrics_to_df (metrics_maze5_explore, metrics_maze5_exploit)

plot_performance (agent_maze5, maze5, mazeS5_metrics_df, cfg, 'Maze5')

ACS2 Performance in Maze5 environment

. Policy Achieved knowledge
100 :
11 e e e e i
P EEEEEN ’
o 80 !
d O oo B |
4 — L 1
% 60 4 :
° i
@ !
= 40 !
H H ENE |
c i
d B E B ‘
1 i
M H R =
4 0 ‘ |
0 # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 0 500 1000 1500 2000 2500 3000
X Trial
Classifiers Steps
500 A ' 50
(\ﬂ\-’\\ :
i
400 - ! 40
0 |
|- 1
L 300 A H v 30
= | 3
n 1
]
% 200 - H W 20
O |
1
100 - .
—— numerosity i 10
—— reliable i
°7 |
1] 5[50 lOIOO lSIOO ZDIOO 25I00 30:30 1] 560 lDIOO 15I00 ZDIOO 25I00 30:30
Trial Trial

22 Chapter 2. Guide

[25]:

[26] :

[27]:

pyalcs Documentation, Release 1.4

Woods14

$%time

define environment
woodsl4 = gym.make ('Woodsl4-v0'")

explore
agent_woodsl4 = ACS2 (cfg)

population_woodsl4_explore, metrics_woodsl4d_explore = agent_woodsl4d.explore (woodsl4,
—1000)

exploit

agent_woodsl4 = ACS2 (cfg, population_woodsl4d_explore)

_, metrics_woodsl4d_exploit = agent_woodsl4.exploit (woodsl4, 200)

CPU times: user 32.1 s, sys: 62.5 ms, total: 32.2 s
Wall time: 32.3 s

woodsl4_metrics_df = parse_metrics_to_df (metrics_woodsl4d_explore, metrics_woodsld_
—exploit)

plot_performance (agent_woodsl4d, woodsl4d, woodsl4_metrics_df, cfg, 'Woodsl4d')

2.4. Jupyter notebooks 23

pyalcs Documentation, Release 1.4

ACS2 Performance in Woods14 environment

. Policy Achieved knowledge
1
#| x| #| #| #| #|#| #| #| #| 5| #| #| 2 1007 '
e i
| #| #| # M #| #| L|# ' 80+ !
2 A — i
1
#| # # #| # e # K # v # v 1
> 3 o |
#| # # # I x| #| # RN #| # L |
= 40 !
44 (@] :
#| #| # [l #| # #| #| #| #| # S
54 20 :
#| # | # #| # R e #| # #F| # #| # H
6 -— 0 : : : : |
0 41 42 43 44 45 46 47 4B 49 410 411 412 13, 0 200 400 600 800 1000
X Trial
Classifiers Steps
160 I 50 -
1
140 - H
1
120 1 | 407
o i
100 -
Qo ' 330—
Y—] 1
2 80 : Q
© 60 i U 201
O i
40 - !
- i
.| — numerosity ! 101
— reliable i
°] . . . ‘ | 0 |
0 200 400 600 800 1000 0 200 400 600 800 1000
Trial Trial

: $matplotlib inline

import matplotlib.pyplot as plt

import gym
from gym.envs.registration import register

2.4.3 ACS2 in Frozen Lake

About the environment > The agent controls the movement of a character in a grid world. Some tiles of the grid are
walkable, and others lead to the agent falling into the water. Additionally, the movement direction of the agent is
uncertain and only partially depends on the chosen direction. The agent is rewarded for finding a walkable path to a
goal tile.

fl_env = gym.make ('FrozenLake-v0')

Reset the state
state = fl_env.reset ()
(continues on next page)

24 Chapter 2. Guide

pyalcs Documentation, Release 1.4

(continued from previous page)

Render the environment
fl_env.render ()

Brrr
FHFH
FFFH
HFFG

Each state might get following possible values: {S, F, H, G} which, refers to

SFFF (S: starting point, safe)

FHFH (F: frozen surface, safe)

FFFH (H: hole, fall to your doom)

HFFG (G: goal, where the frisbee is located)

In case of interacting with environment agent cant perform 4 action which map as follow: - 0 - left - 1 - down - 2 -
right- 3 - up

FrozenLake-v0 defines “solving” as getting average reward of 0.78 over 100 consecutive trials.

We will also define a second version of the same environment but with s1ippery=False parameters. That make it
more deterministic.

register (
id='FrozenLakeNotSlippery-v0',
entry_point='gym.envs.toy_text:FrozenLakeEnv',

kwargs={'map_name': '4x4', 'is_slippery': False},
max_episode_steps=100,
reward_threshold=0.78, # optimum = .8196

fl _ns_env = gym.make ('FrozenLakeNotSlippery-v0')

Reset the state
state = fl_ns_env.reset ()

Render the environment
fl_ns_env.render ()

Brrr
FHFH
FFFH
HFFG

ACS2

Import PyALCS code from local path
import sys, os
sys.path.append (os.path.abspath('../"))

from lcs.agents import EnvironmentAdapter
from lcs.agents.acs2 import ACS2, Configuration

(continues on next page)

2.4. Jupyter notebooks 25

[8]:

pyalcs Documentation, Release 1.4

(continued from previous page)

Enable automatic module reload
$load_ext autoreload
%autoreload 2

CLASSIFIER_LENGTH = 16 # Because we are operating in 4x4 grid
POSSIBLE_ACTIONS = fl_env.action_space.n # 4

Encoding perception

The only information back from the environment is the current agent position (not it’s perception). Therefore our
agent task will be to predicit where it will land after executing each action.

To do so we will represent state as a one-hot encoded vector.

class FrozenlakeAdapter (EnvironmentAdapter) :
@classmethod
def to_genotype(cls, phenotype):
genotype = ['0' for i in range (CLASSIFIER_LENGTH)]
genotype [phenotype] = 'X'
return ''.join (genotype)

X corresponds to current agent position. State 4 is encoded as follows:

FrozenLakeAdapter () .to_genotype (4)

'0000X00000000000"

Environment metrics

We will also need a function for evaluating if agent finished succesfuly a trial

from lcs.metrics import population_metrics

We assume if the final state was with number 15 that the algorithm found the reward.
— Otherwise not
def fl_metrics(pop, env):
metrics = {
'found_reward': env.env.s == 15,

Add basic population metrics
metrics.update (population_metrics (pop, env))

return metrics

Performance evaluation

def print_performance (population, metrics):
population.sort (key=lambda cl: -cl.fitness)
population_count = len(population)
(continues on next page)

26 Chapter 2. Guide

[9]:

pyalcs Documentation, Release 1.4

(continued from previous page)

reliable_count = len([cl for cl in population if cl.is_reliable()])
successful_trials = sum(m['found_reward'] for m in metrics)

print ("Number of classifiers: {}".format (population_count))
print ("Number of reliable classifiers: {}".format (reliable_count))
print ("Percentage of successul trials: {:.2f}%".format (successful_trials /_

—EXPLOIT_TRIALS =« 100))

print ("\nTop 10 classifiers:")
for ¢l in population[:10]:
print ("{!'r} \tg: {:.2f} \tr: {:.2f} \tir: {:.2f} \texp: {}".format(cl, cl.q,

[

—~cl.r, cl.ir, cl.exp))

def

plot_success_trials (metrics, ax=None) :
if ax is None:
ax = plt.gcal()

trials = [m['trial'] for m in metrics]
success = [m]['found_reward'] for m in metrics]

ax.plot (trials, success)
ax.set_title("Successful Trials")
ax.set_xlabel ("Trial")
ax.set_ylabel ("Agent found reward")

plot_population (metrics, ax=None):
if ax is None:
ax = plt.gcal)

trials = [m['trial'] for m in metrics]
population_size = [m['numerosity'] for m in metrics]
reliable_size = [m['reliable'] for m in metrics]

ax.plot (trials, population_size, 'b', label='all'")
ax.plot (trials, reliable_size, 'r', label='reliable')

ax.set_title("Population size")
ax.set_xlabel ("Trial")

ax.set_ylabel ("Number of macroclassifiers")
ax.legend(loc='best"')

plot_performance (metrics) :
plt.figure(figsize=(13, 10), dpi=100)
plt.suptitle('Performance Visualization')

axl = plt.subplot (221)
plot_success_trials (metrics, axl)

ax2 = plt.subplot (222)
plot_population (metrics, ax2)

plt.show ()

24,

Jupyter notebooks 27

[12]:

[13]:

[14]:

pyalcs Documentation, Release 1.4

Default ACS2 configuration

Right now we are ready to configure the ACS2 agent providing some defaults

cfg = Configuration (
classifier_length=CLASSIFIER_LENGTH,
number_of_possible_actions=POSSIBLE_ACTIONS,
environment_adapter=FrozenlLakeAdapter (),
metrics_trial_frequency=1,
user_metrics_collector_fcn=fl_metrics,
theta_i=0.3,
epsilon=0.7)

print (cfqg)
ACS2Configuration:
- Classifier length: [16]
— Number of possible actions: [4]

— Classifier wildcard: [#]

— Environment adapter function: [<__main__ .FrozenLakeAdapter object at
—0x117bd0b00>]

— Fitness function: [None]

— Do GA: [False]

— Do subsumption: [True]

— Do Action Planning: [False]

— Beta: [0.05]

- Epsilon: [0.7]
— U_max: [100000]

Experiments

EXPLORE_TRIALS 2000
EXPLOIT_TRIALS = 100

def perform_experiment (cfg, env):
explore phase
agent = ACS2 (cfqg)
population_explore, metrics_explore = agent.explore(env, EXPLORE_TRIALS)

exploit phase, reinitialize agent with population above
agent = ACS2 (cfg, population=population_explore)
population_exploit, metrics_exploit = agent.exploit (env, EXPLOIT_TRIALS)

return (population_explore, metrics_explore), (population_exploit, metrics_
—exploit)

FrozenLake-v0 environment (baseline)

$%time
explore_results, exploit_results = perform experiment (cfg, fl_env)

CPU times: user 46.1 s, sys: 138 ms, total: 46.2 s
Wall time: 46.3 s

28 Chapter 2. Guide

[15]:

[16]:

pyalcs Documentation, Release 1.4

Learn some behaviour during exploration phase

exploration

print_performance (explore_results[0],

Number of classifiers:

441

Number of reliable classifiers: 0

Percentage of successul trials:

Top 10 classifiers:

#EHEHEFHFFEFHEXO
2825 f: 0.2224
. r: 0.37
H#O##H#FHHHEHH#EXO
—2765 f: 0.2096
. r: 0.36
HO##H#FHHHEHHOXH
—3615 f: 0.1753
— r: 0.37
HEHEHEFHFFEHHEXO
—~377 f: 0.1715
o r: 0.39
HEHEH S HHHEHHOXS
3723 £: 0.1709
o r: 0.38
HESEH S HHHEHHOXS
2807 f: 0.1l661
. r: 0.37
HO##H#HHHHFHHOXS
—2765 f: 0.1639
[r: 0.36
HEHEH S HH S HHEXS
2807 f: 0.1351
- r: 0.37
HOHH#HHHHHHHHHEXS
—2765 f: 0.129
-~ r: 0.36
FHEHHHHHHFOHHHXH
1545 f: 0.0865

— r: 0.21

plot_performance (explore_results[1l])

1 #4##4H###H##440X

exp: 41 tga: 1105
ir: 0.28

1 ##d####E#F##H#0X

exp: 32 tga: 3961
ir: 0.28

3 HHHHHHFEHEHHFEXOS

exp: 43 tga: 3660
ir: 0.36

3 HHHHFHEEFFHHEHOX

exp: 45 tga: 2040
ir: 0.38

3 HHHHHHFEHEHFEXOS

exp: 45 tga: 3117
ir: 0.37

1 ##H##4#4#4H#4X0H

exp: 33 tga: 3251
ir: 0.28

1 ##4##4#4#4H#4X0H

exp: 33 tga: 3251
ir: 0.28

1 ##d##4HE#4HH4#4S

exp: 40 tga: 1748

ir: 0.28
1 ##d##fHE#4HHE#44
exp: 36 tga: 3119
ir: 0.28

2 HEHHHHEHHEXERHOH

exp: 18 tga: 631
ir: 0.15

exp:

exp:

42.00%

(000000000000004#4#)
talp: 15265 tav:
exp: 41
(0#000000000000#4#)
talp: 15265 tav:
exp: 32
(0#000000000004#4#0)
talp: 14982 tav:
exp: 43
(000000000000004#4#)
talp: 14982 tav:
exp: 45
(0000000000000#4#0)
talp: 14982 tav:
exp: 45
(00000000000004##0)
talp: 15265 tav:
exp: 33
(0#000000000004##0)
talp: 15265 tav:
exp: 33
(00000000000000#0)
talp: 15265 tav:
40
(0#000000000000#0)
talp: 15265 tav:
36
(0000000000#000#0)
talp: 14255 tav:
exp: 18

2.

3.

2.

3.

2.

3.

3.

2.

2.

7.

explore_results[1l])

qg: 0.

99e+02

q: 0.

26e+02

q: 0.

96e+02

qg: 0.

13e+02

q: 0.

98e+02

q: 0.

33e+02

q: 0.

26e+02

q: 0.

93e+02

q: 0.

97e+02

q: 0.

17e+02

602 r:

num:

577

num:

471

num:

442

num:

446

num:

452

num:

451

num:

368

num:

355

num:

412

num:

r:

1

r:

1

r:

1

0.3693 ir:
g: 0.60

0.3633 ir:
g: 0.58

0.3723 ir:
g: 0.47

0.3876 ir:
g: 0.44

0.3829 ir:
g: 0.45

0.3676 ir:
g: 0.45

0.3633 ir:
g: 0.45

0.3676 ir:
g: 0.37

0.3633 ir:
g: 0.36

0.2099 ir:
g: 0.41

[

2.4. Jupyter notebooks

29

[17]:

pyalcs Documentation, Release 1.4

Successful Trials

Performance Visualization

Population size

1.0

o o o
F-Y (=] [+5]

Agent found reward

o
]
h

500

400 4

300 +

200 A

Number of macroclassifiers

100 +

— all

—— reliable

0.0 1

L 0-

T T
0 250 500

T T T T
750 1000 1250 1500

T T
1750 2000 0

250

T
500

T
750

T
1000

T T T T
1250 1500 1750 2000

Trial Trial
Metrics from exploitation
exploitation
print_performance (exploit_results[0], exploit_results[1l])
Number of classifiers: 441
Number of reliable classifiers: 0
Percentage of successul trials: 6.00%
Top 10 classifiers:
FHEFEHAHHFEHFHHHEXO 1 HHFHHFEFHFHEFEF0X (0000000000000044#) g: 0.602 r: 0.3693 ir: O.
2825 f: 0.2224 exp: 41 tga: 1105 talp: 15265 tav: 2.99e+02 num: 1 g: 0.60 o
. r: 0.37 ir: 0.28 exp: 41
FOHHHHAHHAHAHHXO 1 #HH#HHHFH#H#HHFH#0X (0#00000000000044#) g: 0.577 r: 0.3633 ir: O.
—2765 f: 0.2096 exp: 32 tga: 3961 talp: 15265 tav: 3.26e+02 num: 1 g: 0.58 o
. r: 0.36 ir: 0.28 exp: 32
FOHHHHAHHAHAHOXE 3 HH#H#HHH#HHHHHFHX0E (0#00000000000#40) g: 0.471 r: 0.3723 ir: O.
3615 f£f: 0.1753 exp: 43 tga: 3660 talp: 14982 tav: 2.96e+02 num: 1 g: 0.47 L
— r: 0.37 ir: 0.36 exp: 43
FHEFEHAHHFEHFFHHEXO 3 HHFHHFHFHHHEFEF0X (0000000000000044#) g: 0.442 r: 0.3876 ir: O.
377 f£: 0.1715 exp: 45 tga: 2040 talp: 14982 tav: 3.13e+02 num: 1 q: 0.44 o
< r: 0.39 ir: 0.38 exp: 45
FHEFEHAHHEFFHOXE 3 HHHHHFHFHHHHFEX0OE (0000000000000#40) g: 0.446 r: 0.3829 ir: O.
3723 £: 0.1709 exp: 45 tga: 3117 talp: 14982 tav: 2.98e+02 num: 1 gq: 0.45 o
. r: 0.38 ir: 0.37 exp: 45
FHEFEHAFHFEFFHOXE 1 HHHHHEFHHHEFEX0OE (0000000000000#40) g: 0.452 r: 0.3676 ir: O.
—2807 f: 0.1661 exp: 33 tga: 3251 talp: 15265 tav: 3.33e+02 num: 1 gq: 0.45 o
— r: 0.37 ir: 0.28 exp: 33
FOHHHHAHHAHAHOXE 1 HH#H#HHH#FHHHF#EX0F (0#00000000000#40) g: 0.451 r: 0.3633 ir: O.
—2765 f: 0.1639 exp: 33 tga: 3251 talp: 15265 tav: 3.26e+02 num: 1 g: 0.45 o
— r: 0.36 ir: 0.28 exp: 33
FHAFHHHHEHEHAHXE L HHHFHHFEFAFRE#ESE (0000000000000040) g: 0.368 r: 0.3676 ir: O.
2807 f£: 0.1351 exp: 40 tga: 1748 talp: 15265 tav: 2.93e+02 num: 1 g: 0.37 o
— r: 0.37 ir: 0.28 exp: 40
HOHFH#HHHHEHAHXE 1 HH#HHH#EHAH#H#44 (0F00000000000040) g: 0.355 r: 0.3633 ir: O.
2765 f: 0.129 exp: 36 tga: 3119 talp: 15265 tav: 2.97e+02 num: 1 qg: 0.36 o
— r: 0.36 ir: 0.28 exp: 36

(continues on next page)

30 Chapter 2. Guide

pyalcs Documentation, Release 1.4

(continued from previous page)

FHAHFHFHHRORHEXE 2 HHAHHHHFHHEXFHHO0#F (0000000000#0004#0) g: 0.412 r: 0.2099 ir: O.
1545 f: 0.0865 exp: 18 tga: 631 talp: 14255 tav: 7.17e+02 num: 1 g: 0.41 o
- r: 0.21 ir: 0.15 exp: 18

FrozenLakeNotSlippery-v0 environment

$%time
explore_results_2, exploit_results_2 = perform_experiment (cfg, fl_ns_env)

CPU times: user 9.99 s, sys: 136 ms, total: 10.1 s
Wall time: 10.2 s

exploration
print_performance (explore_results_2[0], explore_results_2[1])

Number of classifiers: 89
Number of reliable classifiers: 89
Percentage of successul trials: 192.00%

Top 10 classifiers:

FHAFHHFHFRFHHEXRO 2 HHHHFHFHHHHFHHOX (empty) g: 1.0 r: 1.0 ir: 1.0
— f£: 1.0 exp: 191 tga: 237 talp: 14842 tav: 79.9 num: 1 g: 1.00 o
—~ r: 1.00 ir: 1.00 exp: 191

FHAHFHFHFRXEHHOHF 1 #HFHFHFHHHOHHEXHE (empty) g: 1.0 r: 0.95 ir: 0.0
— f: 0.95 exp: 245 tga: 324 talp: 15005 tav: 73.1 num: 1 qg: 1.00 o
—~ r: 0.95 ir: 0.00 exp: 245

FHAFHHHHERFHAXOFE 2 HHAFHFHFHFEHFHOXHE (empty) g: 0.999 r: 0.9459 ir: 0.0
— f: 0.9453 exp: 130 tga: 236 talp: 14842 tav: 1.38e+02 num: 1 g: 1.00 o
— 1r: 0.95 ir: 0.00 exp: 130

FHEHFE R HEEHHEXE 1 HHHHHH SR E S H S (empty) g: 0.997 r: 0.9274 ir: 0.0
— f: 0.9245 exp: 87 tga: 572 talp: 15006 tav: 2.14e+02 num: 1 g: 1.00 .
—r: 0.93 ir: 0.00 exp: 87

FHAHHHFHEXOFHHHE 2 #HHHFHHHHOXEHHHH (empty) g: 1.0 r: 0.9025 ir: 0.0
— f: 0.9025 exp: 399 tga: 117 talp: 15035 tav: 50.2 num: 1 qg: 1.00 o
— r: 0.90 ir: 0.00 exp: 399

FHAHHAXFFFORHHHH L #HHHFHOFHEXEHHEH (empty) g: 1.0 r: 0.8974 ir: 0.0
— f: 0.8971 exp: 137 tga: 26 talp: 14979 tav: 89.2 num: 1 qg: 1.00 o
— r: 0.90 ir: 0.00 exp: 137

FHAFFHFHEXFHHORE 1 #HHHFHFHHOHFAXES (empty) g: 1.0 r: 0.8892 ir: 0.0
— f: 0.8892 exp: 168 tga: 115 talp: 14994 tav: 93.6 num: 1 qg: 1.00 o
— 1r: 0.89 ir: 0.00 exp: 168

FEHHOHFHAHOHHEXE 3 #HFHFHHHHEXEHHO# (empty) g: 0.997 r: 0.8828 ir: 0.0
— f: 0.8797 exp: 98 tga: 485 talp: 14543 tav: 1.62e+02 num: 1 g: 1.00 o
- r: 0.88 ir: 0.00 exp: 98

FHAFFHFHERORHEXE 3 #HAFHFHFHHEXEHHOF (empty) g: 0.997 r: 0.8828 ir: 0.0
— f: 0.8797 exp: 97 tga: 485 talp: 14543 tav: 1.62e+02 num: 1 qg: 1.00 o
—~ 1r: 0.88 ir: 0.00 exp: 97

HHHHHHFHXOEHHHHH 2 HHHHHHHHOXHFH#HHH (empty) q: 1.0 r: 0.8573 ir: 0.0
— f: 0.8573 exp: 740 tga: 114 talp: 15034 tav: 28.7 num: 1 qg: 1.00 o
— 1r: 0.86 ir: 0.00 exp: 740

: plot_performance (explore_results_2[1])

2.4. Jupyter notebooks 31

pyalcs Documentation, Release 1.4

Performance Visualization

Successful Trials Population size
1.0 1
s
80 -
0.8 - 0
&
5
@ 60
§ 0.6 S
- g
< ©
=]
& E 0
o 0.4 6
c [
v 7
[=2] =]
< £
0.2 1 2 5p4
— all
0.0 0 —— reliable
T T T ‘ ‘ ‘ T ‘ ‘ T T T : T ‘ ‘ ‘ :
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Trial Tnal

[21]: # exploitation
print_performance (exploit_results_2[0], exploit_results_2[1])

Number of classifiers: 89
Number of reliable classifiers: 89
Percentage of successul trials: 100.00%

Top 10 classifiers:

FHAFFARAFFHFFHAEXO 2 HEHFHFFHFHFHFHHOX (empty) q: 1.0 r: 1.0 ir: 1.0
— f£: 1.0 exp: 191 tga: 237 talp: 14842 tav: 79.9 num: 1 g: 1.00 o
— r: 1.00 ir: 1.00 exp: 191

HHFHHHHFERXEHHOH 1 #HHHEHHHHFHOHHEXE (empty) g: 1.0 r: 0.95 ir: 0.0 _
— f£: 0.95 exp: 245 tga: 324 talp: 15005 tav: 73.1 num: 1 g: 1.00 o
— 1r: 0.95 ir: 0.00 exp: 245

#AFFAAFHEFHHEXOF 2 #AHHAHFHEHHHHFOXHE (empty) g: 0.999 r: 0.9459 ir: 0.0
— f£: 0.9453 exp: 130 tga: 236 talp: 14842 tav: 1.38e+02 num: 1 q: 1.00 o
— r: 0.95 ir: 0.00 exp: 130

FHHFHFHFFHHHHERE L HHHEHSHRE RS (empty) g: 0.997 r: 0.9274 ir: 0.0 _
— f£: 0.9245 exp: 87 tga: 572 talp: 15006 tav: 2.14e+02 num: 1 g: 1.00 o
—r: 0.93 ir: 0.00 exp: 87

FHHHHHHHEXOHHHHE 2 #HHHHHHHHOXEH#ES (empty) g: 1.0 r: 0.9025 ir: 0.0
— f: 0.9025 exp: 399 tga: 117 talp: 15035 tav: 50.2 num: 1 qg: 1.00 o
— r: 0.90 ir: 0.00 exp: 399

FHFHFHXFFFOHHHHE 1 #HHHHH0HH#EXEH#ES (empty) g: 1.0 r: 0.8974 ir: 0.0 _
— f: 0.8971 exp: 137 tga: 26 talp: 14979 tav: 89.2 num: 1 g: 1.00 o
— r: 0.90 ir: 0.00 exp: 137

FHHHHHHHEXFHHORE 1 #HHHEHHHHOFHEXES (empty) g: 1.0 r: 0.8892 ir: 0.0
—~ f: 0.8892 exp: 168 tga: 115 talp: 14994 tav: 93.6 num: 1 g: 1.00 o
—~ r: 0.89 ir: 0.00 exp: 168

HHHHOHHHFHOHHHEXE 3 #HHH#HHHHHEXEHHO# (empty) g: 0.997 r: 0.8828 ir: 0.0
— f: 0.8797 exp: 98 tga: 485 talp: 14543 tav: 1.62e+02 num: 1 g: 1.00 o
. r: 0.88 ir: 0.00 exp: 98

HEHHHHHFEHOHHEXE 3 #HHHHHHHHFEXEHHOF (empty) g: 0.997 r: 0.8828 ir: 0.0
— f: 0.8797 exp: 97 tga: 485 talp: 14543 tav: 1.62e+02 num: 1 g: 1.00 o
-~ 1r: 0.88 ir: 0.00 exp: 97

HEHHHHHEXOFHHEHE 2 #HHHFHHHHOXFHH#ES (empty) g: 1.0 r: 0.8573 ir: 0.0
— f: 0.8573 exp: 740 tga: 114 talp: 15034 tav: 28.7 num: 1 g: 1.00 L
~ r: 0.86 ir: 0.00 exp: 740 (continues on next page)

32 Chapter 2. Guide

[22]:

pyalcs Documentation, Release 1.4

Comparison

def plot_population(metrics, ax=None) :
if ax is None:
ax = plt.gcal()

trials = [m['trial'] for m in metrics]

population_size = [m['numerosity']

ax.plot (trials, population_size, 'b',

ax.plot (trials, reliable_size, 'r',

ax.set_title("Population size")
ax.set_xlabel ("Trial")

ax.set_ylabel ("Number of macroclassifiers")

ax.legend(loc='best')

original = explore_results[1l]
modified = explore_results_2[1]

ax = plt.gcal()

trials = [m['trial'] for m in original]
original_numerosity = [m['numerosity']
modified_numerosity = [m['numerosity']

ax.plot (trials, original_numerosity, 'r')
ax.text (1000, 350, "Original environment",

ax.plot (trials, modified_numerosity, 'b')
ax.text (1000, 40, 'No-slippery setting’,

for m in metrics]
reliable_size = [m['reliable'] for m in metrics]

label='all")
label="reliable')

color="r")

color="'b'")

(continued from previous page)

for m in original]
for m in modified]

ax.set_title('Classifier numerosity in FrozenLake environment')

ax.set_xlabel ('Trial'")

ax.set_ylabel ('Number of macroclassifiers')

plt.show ()

2.4. Jupyter notebooks

33

pyalcs Documentation, Release 1.4

Classifier numeraosity in FrozenLake environment

500
i 400 A
i L .
= Original environment
i
< 300 A
=]
g
£
w200
T
E
3 100 1
Mao-slippery setting
l]'
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Trial
34 Chapter 2. Guide

	Anticipatory Learning Classifier Systems (ALCS)
	Guide
	Installation
	ACS2
	rACS
	Jupyter notebooks

